Brake Moan Simulation using Flexible Methods in Multibody Dynamics

Anthony Gugino, John Janevic
Mechanical Dynamics, Inc.
Ann Arbor, MI

Laszlo Fecske
Bosch Braking Systems Europe
Drancy, France

Plan of Presentation

1) Introduction
2) Modeling
3) Results
4) Conclusion
Introduction

• General characteristics of brake moan
 – Low frequency noise phenomenon (<500 Hz)
 – Typically seen at very low vehicle speeds and brake pressures
 – Pad and disc stick momentarily and then release causing an excitation often transmitted to braking & suspension systems
 – Does not indicate a functional brake problem
 – Significant customer satisfaction issue resulting in costly warranty claims
Introduction

• Specific moan case studied
 – Rear brake on SLA trailing arm suspension
 – Fundamental frequency = 320 Hz
 – Off-braking
 – Most evident during extreme turning of loaded vehicle
 – Very low vehicle velocity (< 5 km/h)
 – Sensitive to bending characteristics of trailing arm (tie blade)

Introduction

• Several experimental measurements carried out to understand and describe the phenomenon (e.g. ODS, Modal Analysis etc.) on brake and tie-blade
• For deeper understanding of above phenomenon and as preventive action on forthcoming platforms, a virtual prototyping effort was launched
Introduction

- **Project Goals**
 - Create a multibody dynamic model of brake system
 - Rigid-body foundation brake components
 - Flexible representation of tie blade
 - Simulate moan phenomenon
 - Use model to test and design potential countermeasures
 - Model to serve as template for moan studies on future brake systems

Presentation Content

1) Introduction
2) Modeling
3) Results
4) Conclusion
Modeling

- Modeling Approach

<table>
<thead>
<tr>
<th>ADAMS</th>
<th>Geometry - Solid Model from CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Properties - Mass, Stiffness and Damping</td>
</tr>
<tr>
<td></td>
<td>- Mass from Solid Model</td>
</tr>
<tr>
<td></td>
<td>- Stiffness from measurements or specifications</td>
</tr>
<tr>
<td></td>
<td>- Damping from measurements or specifications</td>
</tr>
</tbody>
</table>

- Build Kinematic Model
- Add Dynamics; Contact, Friction, Compliances
- Validate
- Parameterize
- Design Studies

Model Components

- Foundation Brake
 - Rotor
 - Pads
 - Caliper
 - Piston
 - Anchor plate
 - Guide pins

- Suspension
 - Tie blades
 - Control arms
 - Springs
 - Shocks
 - Anti-roll bar
Modeling

Foundation disc brake: modeled as multi rigid-body system

Modeling

Suspension components – all rigid bodies, except tie blade (flexible)
Modeling

• Model Inputs
 – Rotor Velocity: 0-10.6 deg/s (vehicle 0.2 km/h) in 0.5 sec
 – Brake Pressure: constant 197kPa (approx. 2bar)

Modeling assumptions
 – All rigid bodies except tie blade
 – Only foundation brake modeled, no hydraulics
 – No thermal effects
 – No full-vehicle simulation; motion applied directly to rotor
Specific model elements
- Pad-to-Rotor contact
 - Normal force: controlled by ADAMS IMPACT function
 - Frictional force: $F_{\text{fr}} = \mu(v) \cdot F_{\text{n}}$
 - $\mu_{\text{static}} = 0.5$
 - $\mu_{\text{dynamic}} = 0.37$
• Specific model elements
 – Flexible tie blade
 • Physically, moan known to be sensitive to bending characteristics of tie blade
 • Unable to replicate moan with rigidly modeled tie blade
 • Import modal data from FE model of tie blade to ADAMS model
 • Constrain FE tie blade in ADAMS and upon it mount rigid-body brake model
Results

Presentation Content

1) Introduction
2) Modeling
3) Results
4) Conclusion

Results

- Model output considerations
 - Time domain moan signal
 - Frequency domain moan signal
 - Mode shape animation
Results

- Model output characteristic of moan
 - Acceleration on caliper and along tie blade
 - Stick-slip pulses followed by sustained vibration
 - Fundamental frequency in 300Hz range
- Frequency comparison

<table>
<thead>
<tr>
<th>Test Point</th>
<th>ADAMS Model Moan Frequency</th>
<th>Physical Test Data Moan Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A: forward, high on tie blade</td>
<td>268 Hz</td>
<td>312 Hz</td>
</tr>
<tr>
<td>Point B: forward, low on tie blade</td>
<td>268 Hz</td>
<td>312 Hz</td>
</tr>
<tr>
<td>Point C: middle, low on tie blade</td>
<td>268 Hz</td>
<td>312 Hz</td>
</tr>
<tr>
<td>Point D: top of caliper, near guide pin</td>
<td>268 Hz</td>
<td>312 Hz</td>
</tr>
</tbody>
</table>
Moan Profile: model results

![Tangential Caliper Acceleration Time History](image1)

![Tangential Caliper Acceleration Frequency Spectrum](image2)

Moan Profile: experimental test data

![Tie Blade Acceleration](image3)

![Lateral Tie Blade Acceleration (squared) Spectrum at point 0.0112](image4)
Results

• Mode shape animation
 – Tie blade bending mode natural frequency (free-free) = 262Hz
 – Simulated system natural frequency = 268 Hz

Results

• Model response to moan countermeasures
 – Removal of anti-rattle clip
 • experimental: reduced moan occurrence
 • model: no moan

 – Swaged tie blade
 • experimental: reduced moan occurrence
 • model: no moan
Results

- Model response to input variations
 - Brake pressure increase
 - experimental: no moan
 - model: no moan
 - Rotor velocity increase
 - experimental: no moan
 - model: no moan

Results
Conclusion

Model reasonably replicated the moan signal
Successful comprehensive model validation
 – Response to known countermeasures
 – Response to input variations
Flexible Multi-body dynamics approach allows for faster simulation time versus FE-only method
 – Use flexible bodies only where needed
 – Baseline model runs in ~1.5 hours on Pentium II NT workstation
Conclusion

- Model usable for additional exploration
 - Parametric sensitivity studies
 - Guide to physical experimentation
 - Address future warranty issues
- Template for future brake system modeling
- Combined finite element and multibody dynamic simulation models are essential to successful brake vibration simulation